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Phase scaling properties of perturbation-induced multistability in a driven nonlinear system
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Phase scaling relations for the onsets of both saddle-node bifurcations and boundary crises induced by
resonant periodic perturbations at subharmonic frequencies are found in a period-doubled system from the
results of numerical simulation. These phase dependences determine the domains of existence of induced
attractors in(bifurcation parameter, perturbation phagarameter space. The overlapping of these domains
leads to the formation of zones with different numbers of coexisting attractors. The numerical evidence was
obtained on the basis of single-mode rate equations of a laser with parameters corresponding to a realistic
loss-modulated CQlaser.
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The response of driven nonlinear systems to the effect operturbation at the frequencies /n(n=2,4,8) with their
a resonant periodic perturbation is known to be very sensiphases were found in the vicinity of the first three originally
tive to the phase difference between driving and perturbationnperturbed period-doubling bifurcations. In addition, the
frequencies. Specifically, phase effects have been found icaling laws relating the perturbation phase and the critical
the nonfeedback control of chapk—6], small signal ampli- Vvalue of the bifurcation parameter for the boundary crisis
fication and classical squeezing near the first period-doublingnduced by weak periodic perturbations were also found. For
bifurcation[7,8], trajectory selection in multistable systems both types of critical point we present a generalization of the
[9,10], stabilization and destabilization of periodic ortise  effect of the phase of the resonant periodic perturbation with
phase control of dynamical systeni], the bistability in-  an arbitrary subharmonic frequenty/n. Such phase depen-
duced by the periodic perturbation at the first subharmoni¢lences lead to an interesting consequence: for certain values
frequency{ 11,12, unfolding of the period-2 pitchfork bifur- of the bifurcation parameter, by varying the perturbation
cation[13], and the resonant goal-oriented control of nonaufhase monotonically, we can periodically change the number
tonomous systemfl4]. It was also found that a change in of coexisting attractors.
the phase of the resonant perturbation leads to global The phase effects for the perturbation-induced multistabil-
changes in full bifurcation diagrani45s. ity were studied numerically, as in R¢1.6], with the help of
Recently, it was experimentally and numerically shownthe bifurcation diagrams in the presence of resonant pertur-
that the resonant perturbation at the frequefign (where  bations using the well known single-mode laser equations
f4 is the main driving frequency)=2,4,8,16...) can in- [17]
duce in period-doubled systems uprt@oexisting attractors
via the mechanism of a so-called imperfect bifurcation. The ﬂ: 7 Yy—Kku 1)
experimental and numerical evidence was obtained on the dt y '
basis of a loss-modulated G@aser[16]. Although all results
presented there were obtained with the zero phase of the
resonant perturbation, it was also mentioned that the phase of at- Womy)y—uy,
the resonant perturbation can play an important role in ob-
taining multistability in the sense that a change in the phase/here
may result in a change of the number of attractors induced.
This paper is directly devoted to a detailed numerical k=kot+kg cog27fgt) +k, cog2n7fgt/in+¢). (2
study of phase effects in the multistability induced by reso-
nant perturbations using the well known single-mode laseHereu is proportional to the radiation density,andy, are
equationg17]. As shown in Ref[16], the location of attrac- the gain and the unsaturated gain in the active medium, re-
tors induced by resonant perturbations on the bifurcation diaspectively,r is the transit time of light in the cavityy is the
grams is determined by two critical points: saddle-node bi-gain decay ratek is the total cavity lossk, is the constant
furcations and boundary crises at which new attractorgart of the lossky is the driving amplitudek, is the pertur-
appear and disappear, respectively, as a bifurcation parameteation amplitudef 4 is the driving frequencyyp is the per-
increases. Therefore, we studied the dependences of thegbation phase, and=2,4,8 ... . Throughout the calcula-
critical points on the perturbation phase. Based on the resultions the following fixed parameters were usegk 3.5
of the numerical simulation, phase scaling laws relating the< 10 ° s,y=1.978<x10° s !, y,=0.175, k,=0.1731.
onset of saddle-node bifurcations induced by the resonarithe relaxation oscillation of the laser wis=50 kHz and
the driving frequency wag =100 kHz. All these param-
eters correspond to a realistic €@ser. In the numerical
*Electronic address: vnc@dragon.bas-net.by simulations two parameteks and ¢ were varied. Hereafter,
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the normalized bifurcation parameterand the perturbation
amplitudee are useddefined asu=ky/k; ande=Kky/k,,
respectively, wherek,=2.478<10 3 is the first period-
doubling threshold in the absence of the perturbatidine
amplitude of the loss perturbatiokg was taken so that the
values ofe would be small.

Let us consider in series the influence of the phase of the
perturbations with frequencidg/2,f /4, andf 4/8 on the first
three period-doubling bifurcations and the last three band-
merging crises. This consideration will allow us then to make
a generalization of the effect of the perturbation phase for an
arbitrary subharmonic frequency.

(i) Phase effects in the presence of a resonant perturba-
tion with a frequency /2. Some aspects of this problem
were investigated numerically and experimentally[iri—
13,15, mainly in the vicinity of the first period-doubling
bifurcation. From these investigations, we note the results
obtained by Newellet al. [13], which are relevant to our
study. Using a specific mapping, derived from single-mode
laser equations, relating the amplitude of spikes and the in-
terspike intervals, they found that the resonant perturbation
at the frequencyf4/2 destroys the period-2 pitchfork bifur-
cation, which is replaced by a smooth transition branch and a Bifurcation parameter p
new fixed point. They found that the phase dependence of FIG. 1. The bifurcation diagrams of the laser vergusn the

the Iocatl_on of this limit point is proportional tO.C%§(¢)’ absencda) and in the presence of a resonant perturbation at fre-
where ¢ is the phase of the resonant perturbation. Further 12 with diff h — /6 (b) ando=2m7/3

ill show that similar phase dependences occur for alﬂuencyfd WIth two ditferent phaseg = ( )-an p=2m13 (©).
Wed:;\{' de bif . hich in the vicini f th Msn @nd w, denote critical values corresponding to the appearance
saddie-node |urcat!ons which appear In the vicinity of the¢'e saddle-node bifurcation and boundary crisis, respectively,
original period-doubling bifurcations in the presence of thejngyceq by the perturbation 4g/2. The perturbation amplitude
resonant periodic perturbations. =353<10°3.

Figure 1 shows bifurcation diagrams of the laser in the
presence of a perturbation &2 with two different phases. ,~0.67, which is very close to the value 2/3 predicted in
These bifurcation diagrams were obtained by a superimposief. [13] from the classB laser map. Therefore, we can
tion of several generated with randomly distributed initial 55gjgne~2/3 with a rather high accuracy. Obviously, there

conditions. For reference, Fig.(@ shows the bifurcation gyist values of the phase for which the effect of the resonant
diagram of the laser without perturbation. Figuréb)land perturbation can be both minimak,,~28.65°) and maxi-

1(c) correspond to the effect of the perturbation with phaseg g (oma=118.65°) in the sense of the distance between the

¢=m/6 and ¢=2m/3, respectively. In order to simplify saqgdle-node bifurcation induced and the original period-
these two last diagrams, only one subband of each attractor Houbling bifurcation.

shown in Figs. (b) and Xc). One can see on both figures
that a coexistence of two attractors can be found between 268
two critical points, the locations of which are strongly phase
dependentius,, where the second attractor appears via a
saddle-node bifurcation, ang,., where the firstor the sec-
ond) attractor disappears through a boundary crisis. The
phase dependence of the location of these critical popags (
and upe) in (u,9) parameter space is shown in Figga)2
and 2b), respectively. The fitting of the numerical data gives
the following scaling law which relateg,, and the pertur-
bation phasep in the vicinity of the original first period-
doubling bifurcationu:
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FIG. 2. Phase dependences of critical values for the onda) of

where A is a coegflment that depends on the perturbationsaygle-node bifurcation., and(b) boundary crisigus, induced by
amplitudes, andeg,~61.35° is the initial phase shift, which resonant perturbations at frequerfgy2. 1, and u e denote criti-

is determined by the dissipation in the laser. For the givertal values for the first period-doubling bifurcation and the last band-
£=3.53x10"2 used in the simulation we obtaineA  merging crisis in the absence of the resonant perturbation. The per-

~0.091. In this case the fitting of the numerical data givesurbation amplitudes=3.53< 103,
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An analogous scaling law, but with a different exponent,
is obtained for the phase dependence of the critical value for 0

the boundary crisigep.:

Mbc™ Mmc™ BlCOSB((p+(p8C)|, 4

whereu,,.~3.6598 is the value of the bifurcation parameter
corresponding to the last band-merging crisis in the absence

of the resonant perturbatioB,is a coefficien{in our case for
the £=3.53x10 2 used in the simulation we obtainegl
~0.0917) ande?.~49.04° is the initial phase shift. For
small values ofe, the fitting of the numerical data yield3

~1. It should be noted that the strong influence of the phase
of the second resonant modulation on the boundary and in-

ternal crises was pointed out in RE5], although they have
not found any simple relation between dephasingnd the

location of the critical points for crises. For the given pertur-

bation amplitudes, these curves gs, and upo) in (w, )

parameter space serve as boundaries of zones with different

numbers of attractors. Below the curug, there is only one
attractor, between curvgs,, and up, there are two coexist-
ing attractors, and above the curug. we have again one
attractor. For givere and certain ranges gk, by varying

only the phase, we can periodically change the number of
attractors between 1 and 2, which can be either in the peri-

odic or in a chaotic state.
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FIG. 3. The bifurcation diagrams of the laser vergusn the
presence of a resonant perturbation at frequehy¢¥ with three

(ii) Phase effects in the presence of a resonant perturbagifterent phasesa) = /6, (b) ¢=/3, and(c) ¢=4m/9. uen

tion with frequency §/4. Figure 3 shows bifurcation dia-
grams of the laser in the presence of a perturbatiofy/dt
with three different phaseg= #/6 [Fig. 3@)], ¢ = 7/3 [Fig.
3(b)], and ¢=4=/9 [Fig. 3(c)] which were obtained by the

and up¢i (i=1,2,3) denote critical values corresponding to the ap-
pearance of saddle-node bifurcations and boundary crises, respec-
tively. P3 denotes a period-3 branch which appearg at3.065.

The perturbation amplitude=1.41x 103,

same procedure mentioned above. As in the previous case

only

figures. For a certain range of the bifurcation parameter, suc
a perturbation can induce four attractors, which one can se?e
on each diagram of Fig. 3. The second attractor appears jusst

above the first original period-doubling bifurcatiaithis
range ofu is not shown in Fig. B and the third and fourth

appear above the second period-doubling bifurcation. Com;
paring the diagrams in Fig. 3 one can see that the relativ
positions of all attractors and correspondingly all bifurcation
points associated with them strongly depend on the phase

one subband from four for each attractor is shown in theo€€ that this relation has phase-doubled dependence. The sec-

ﬂnd peculiarity is that the effect of the resonant perturbation
t the frequency 4/4 on the first period-doubling bifurcation
very small.

The phase dependences for the location of saddle-node
bifurcations (s and ugy3) in the vicinity of the second
eriod-doubling bifurcation, shown in Fig(l), can be ap-
roximated by the expressiai3), where u; should be re-
laced by, (us is the threshold value for the second
eriod-doubling bifurcation ¢2, is an initial phase shift
hich is different for the two curves and differing by/2.

the resonant perturbation. Figure 4 summarizes the influencenis means there are two curves which are shiftedmti
of the phase on the location of all saddle-node bifurcationgyi, respect to each other. For a small valuespthe fitting
and critical points for boundary crises induced by a perturf the numerical data yielda~2/3 for both curves.

bation at frequency 4/4 in the vicinity of the original first
[Fig. 4] and secondFig. 4(b)] period-doubling bifurca-
tions and, correspondingly, near the original IgSig. 4(c)]

A similar situation takes place in the vicinity of the two
last band-merging crises. Near the penultimate one we have
two boundary crisefdenoted in Fig. &) as upez and wpeo |,

and penultimat¢Fig. 4(d)] band-merging crises. The phase the location of which can be approximated by expres&ion
dependence for the location of the saddle-node bifurcatiowhereu,, should be replaced by, (u, is the threshold

Msmt 1IN the vicinity of the first period-doubling bifurcation,
represented in Fig.(4), can be approximated by the follow-
ing expression:

)

whereA~1.1x 102 (for £=1.41x10 3 used in the simu-
lation), and ¢2,,~3.52°. The fitting of the numerical data
yields a~2/3. Comparing expression8) and (5) one can

Msnl”#l+A|COSX(2€D+ ‘Pgn1)|v

value for the penultimate band-merging crjsksgc, as in the
previous case, is different for the two curves and differs by
7l2. Therefore, there are again two2-shifted curves. The
fitting of the numerical data giveg~1 which coincides
with the previous case for the boundary crisis represented in
Fig. 2(b). In what follows, the numbering of band-merging
crises will here be in the reverse order, so that the last one is
denoted a1, the penultimate one gs,,., and so on up

to the accumulation point.
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FIG. 4. Phase dependences of critical values for the ondg) of 10
saddle-node bifurcationg.s,;, and (b) boundary crisisgupg; (i 10005 n
=1,2,3) induced by resonant perturbations at frequeingd. u; ' (@
and unq correspond to normalized threshold values for period- ] 1 "
doubling bifurcations and band-merging crises in the absence of the !
resonant perturbation. The perturbation amplitedel.41x 10 3. 0 4F€>h QOD 135 180
The numbers on the figure denote the number of attractors in every ase ¢ (Degree)
zone.

- ) . FIG. 5. Phase dependences of critical values for the onge} of
In the vicinity of the last band-merging crisigcfa) the  saddie-node bifurcationges,; and (b) boundary crisesupe; (i

phase dependence for the boundary crisienoted in Fig. =12 ... 7)induced by resonant perturbations at frequehg$.
4(d) as upc1] can be expressed as The perturbation amplitude=0.706x< 10 3. The numbers on the
0 figure denote the number of attractors in every zone.
Mbcl“#mcl_B|COSB(2(P+(Pbcl)|1 (6)
[Figs. 5§a)-5(c)] and near the last three original band-
Where,umcl~3.6598;p8d~27.42°, andB~1.69x10 2 (for  merging crises[Figs. d)—5(f)]. Above the first period-
e~1.41x10 2 used in the simulation The fitting of the  doubling bifurcation[Fig. 5] we have again the phase-
data yields agaiB~ 1 as in the previous case for the bound- doubled dependence with respect to the previous case
ary crisis. represented in Fig.(d). In the vicinity of the second period-

The intersection of these curves leads to the formation ofloubling bifurcation there are tws/2-shifted phase-doubled
zones with different numbers of attractors. The numbers omlependencég=ig. 5(b)], and above the third period-doubling
the figure denote the number of attractors in every zone. Thibifurcation there exist four phase dependences for saddle-
means that for a gives, by varying the perturbation phage node bifurcations shifted by/4 with respect to each other
and depending on the value of the bifurcation parameter [Fig. 5(c)]. A similar picture, but in reverse order, is observed
we can change the number of attractors between 1 and 2,f@r the phase effects of boundary crises in the vicinity of the
and 3, 3 and 4. There are some values of the phase at whid&st three band-merging crises which are represented in Figs.
two attractors appear and disappear simultaneously, but theSéd)—5(f). For the givens ~0.706< 103, the fitting of the
values of the phase are different for saddle-node bifurcationsumerical data yielda~ 2/3 for all saddle-node bifurcations
and boundary crises. and B~1 for all boundary crises represented in Fig. 5.

(iif) Phase effects in the presence of a resonant perturba- Taking into account all regularities found previously, for
tion with frequency §/8. We consider this case in order to the given perturbation amplitude we can write a general
generalize the effect of the phase of the resonant perturbatiaelation that allows one to find the phase dependence of any
with higher-order subharmonic frequencies. It should besaddle-node bifurcation and critical point for a boundary cri-
noted that this case repeats all regularities found in the presis induced by weak resonant perturbations with an arbitrary
ceding case; therefore we shall consider it very briefly. Figsubharmonic frequency 4/2¢ (k=1,2,3...). The phase
ure 5 shows the phase dependences for this case in the \dependence for the onset of thih saddle-node bifurcation
cinity of the first three original period-doubling bifurcations induced by a resonant perturbation at frequefigg in the
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vicinity of the ith initial period-doubling bifurcation can be can assigiB~1 for small values ok. It should be noted that
expressed as with increasinge both exponentsx and 8 also increase.
Obviously, these curves inu(¢) parameter space can be

pit~ uPl+ Alcos 2 o+ m(j—1)12 7+ o3| (7))  considered as boundaries of domains of existence of different
) _ - attractors. The overlapping of these domains results in the
(i=1,2,...k and j=1.2,...,277), appearance of multistable states, the number of which for a

given perturbation amplitude depends on the bifurcation

whereuP?is the value of the bifurcation paramefercorre- parameter. and the perturbation phageas shown in Figs.
sponding to theith period-doubling bifurcation in the ab- 4 5.4 5.

sence of the resonant perturbatid, is the corresponding To conclude, we have found from a numerical simulation
coefficient, which depends on the valuesofand¢gi' is the  of 4 joss-modulated CQaser simple phase scaling relations

initial phase shift, which is different for different In gen-  for the location of both saddle-node bifurcations and bound-
eral, o depends ore, but for smalle we can assigne  gary crises induced by resonant perturbations at subharmonic

*2/3-. ) N frequencies. For a given perturbation amplitude these phase
A similar phase dependence occurs for the critical valuegiependences allow one to find zones with different numbers
for boundary crises: of coexisting attractors irfbifurcation parameter, perturba-

tion phase parameter space. Since the period-doubling cas-
cade is a universal feature of driven nonlinear systems one
can expect that analogous phase properties will be observed
in many other systems in the presence of resonant periodic

uS~ u"=Bi|cod[ 2 T+ m(j—1)/2 1+ opf]| (8)

(i=1,2,...k and j=1,2,...,27Y),

where u{"° is the critical value corresponding to thea un-

perturbed band-merging crisiB; is a coefficient, andogic iS Partial financial support from the DGESICSpain),
the initial phase shift, both of which are different for differ- through Project No. PB98-0935-C03-03 is gratefully ac-
enti. Taking into account all previously studied cases, weknowledged.

perturbations at subharmonic frequencies.
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