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Phase scaling properties of perturbation-induced multistability in a driven nonlinear system
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Phase scaling relations for the onsets of both saddle-node bifurcations and boundary crises induced by
resonant periodic perturbations at subharmonic frequencies are found in a period-doubled system from the
results of numerical simulation. These phase dependences determine the domains of existence of induced
attractors in~bifurcation parameter, perturbation phase! parameter space. The overlapping of these domains
leads to the formation of zones with different numbers of coexisting attractors. The numerical evidence was
obtained on the basis of single-mode rate equations of a laser with parameters corresponding to a realistic
loss-modulated CO2 laser.
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The response of driven nonlinear systems to the effec
a resonant periodic perturbation is known to be very se
tive to the phase difference between driving and perturba
frequencies. Specifically, phase effects have been foun
the nonfeedback control of chaos@1–6#, small signal ampli-
fication and classical squeezing near the first period-doub
bifurcation @7,8#, trajectory selection in multistable system
@9,10#, stabilization and destabilization of periodic orbits~the
phase control of dynamical systems! @5#, the bistability in-
duced by the periodic perturbation at the first subharmo
frequency@11,12#, unfolding of the period-2 pitchfork bifur-
cation@13#, and the resonant goal-oriented control of nona
tonomous systems@14#. It was also found that a change
the phase of the resonant perturbation leads to glo
changes in full bifurcation diagrams@15#.

Recently, it was experimentally and numerically show
that the resonant perturbation at the frequencyf d /n ~where
f d is the main driving frequency,n52,4,8,16, . . . ) can in-
duce in period-doubled systems up ton coexisting attractors
via the mechanism of a so-called imperfect bifurcation. T
experimental and numerical evidence was obtained on
basis of a loss-modulated CO2 laser@16#. Although all results
presented there were obtained with the zero phase of
resonant perturbation, it was also mentioned that the phas
the resonant perturbation can play an important role in
taining multistability in the sense that a change in the ph
may result in a change of the number of attractors induc

This paper is directly devoted to a detailed numeri
study of phase effects in the multistability induced by re
nant perturbations using the well known single-mode la
equations@17#. As shown in Ref.@16#, the location of attrac-
tors induced by resonant perturbations on the bifurcation
grams is determined by two critical points: saddle-node
furcations and boundary crises at which new attract
appear and disappear, respectively, as a bifurcation param
increases. Therefore, we studied the dependences of
critical points on the perturbation phase. Based on the res
of the numerical simulation, phase scaling laws relating
onset of saddle-node bifurcations induced by the reson
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perturbation at the frequenciesf d /n(n52,4,8) with their
phases were found in the vicinity of the first three origina
unperturbed period-doubling bifurcations. In addition, t
scaling laws relating the perturbation phase and the crit
value of the bifurcation parameter for the boundary cri
induced by weak periodic perturbations were also found.
both types of critical point we present a generalization of
effect of the phase of the resonant periodic perturbation w
an arbitrary subharmonic frequencyf d /n. Such phase depen
dences lead to an interesting consequence: for certain va
of the bifurcation parameter, by varying the perturbati
phase monotonically, we can periodically change the num
of coexisting attractors.

The phase effects for the perturbation-induced multista
ity were studied numerically, as in Ref.@16#, with the help of
the bifurcation diagrams in the presence of resonant per
bations using the well known single-mode laser equati
@17#

du

dt
5t21~y2k!u, ~1!

dy

dt
5~y02y!g2uy,

where

k5k01kd cos~2p f dt !1kp cos~2p f dt/n1w!. ~2!

Hereu is proportional to the radiation density,y andy0 are
the gain and the unsaturated gain in the active medium,
spectively,t is the transit time of light in the cavity,g is the
gain decay rate,k is the total cavity loss,k0 is the constant
part of the loss,kd is the driving amplitude,kp is the pertur-
bation amplitude,f d is the driving frequency,w is the per-
turbation phase, andn52,4,8, . . . . Throughout the calcula-
tions the following fixed parameters were used:t53.5
31029 s,g51.9783105 s21, y050.175, k050.1731.
The relaxation oscillation of the laser wasf ro550 kHz and
the driving frequency wasf d5100 kHz. All these param-
eters correspond to a realistic CO2 laser. In the numerica
simulations two parameterskd andw were varied. Hereafter
©2002 The American Physical Society01-1
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the normalized bifurcation parameterm and the perturbation
amplitude« are used~defined asm5kd /k1 and «5kp /k1,
respectively, wherek152.47831023 is the first period-
doubling threshold in the absence of the perturbation!. The
amplitude of the loss perturbationskp was taken so that the
values of« would be small.

Let us consider in series the influence of the phase of
perturbations with frequenciesf d/2,f d/4, andf d/8 on the first
three period-doubling bifurcations and the last three ba
merging crises. This consideration will allow us then to ma
a generalization of the effect of the perturbation phase fo
arbitrary subharmonic frequency.

(i) Phase effects in the presence of a resonant pertur
tion with a frequency fd/2. Some aspects of this problem
were investigated numerically and experimentally in@11–
13,15#, mainly in the vicinity of the first period-doubling
bifurcation. From these investigations, we note the res
obtained by Newellet al. @13#, which are relevant to ou
study. Using a specific mapping, derived from single-mo
laser equations, relating the amplitude of spikes and the
terspike intervals, they found that the resonant perturba
at the frequencyf d/2 destroys the period-2 pitchfork bifur
cation, which is replaced by a smooth transition branch an
new fixed point. They found that the phase dependenc
the location of this limit point is proportional to cos2/3(w),
wherew is the phase of the resonant perturbation. Furth
we will show that similar phase dependences occur for
saddle-node bifurcations which appear in the vicinity of t
original period-doubling bifurcations in the presence of t
resonant periodic perturbations.

Figure 1 shows bifurcation diagrams of the laser in
presence of a perturbation atf d/2 with two different phases
These bifurcation diagrams were obtained by a superimp
tion of several generated with randomly distributed init
conditions. For reference, Fig. 1~a! shows the bifurcation
diagram of the laser without perturbation. Figures 1~b! and
1~c! correspond to the effect of the perturbation with pha
w5p/6 and w52p/3, respectively. In order to simplify
these two last diagrams, only one subband of each attract
shown in Figs. 1~b! and 1~c!. One can see on both figure
that a coexistence of two attractors can be found betw
two critical points, the locations of which are strongly pha
dependent:msn , where the second attractor appears via
saddle-node bifurcation, andmbc , where the first~or the sec-
ond! attractor disappears through a boundary crisis. T
phase dependence of the location of these critical points (msn
and mbc! in (m,w) parameter space is shown in Figs. 2~a!
and 2~b!, respectively. The fitting of the numerical data giv
the following scaling law which relatesmsn and the pertur-
bation phasew in the vicinity of the original first period-
doubling bifurcationm1:

msn'm11Aucosa~w1wsn
0 !u, ~3!

where A is a coefficient that depends on the perturbat
amplitude«, andwsn

0 '61.35° is the initial phase shift, whic
is determined by the dissipation in the laser. For the giv
«53.5331023 used in the simulation we obtainedA
'0.091. In this case the fitting of the numerical data giv
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a'0.67, which is very close to the value 2/3 predicted
Ref. @13# from the classB laser map. Therefore, we ca
assigna'2/3 with a rather high accuracy. Obviously, the
exist values of the phase for which the effect of the reson
perturbation can be both minimal (wmin'28.65°) and maxi-
mal (wmax'118.65°) in the sense of the distance between
saddle-node bifurcation induced and the original perio
doubling bifurcation.

FIG. 1. The bifurcation diagrams of the laser versusm in the
absence~a! and in the presence of a resonant perturbation at
quencyf d/2 with two different phasesw5p/6 ~b! andw52p/3 ~c!.
msn andmbc denote critical values corresponding to the appeara
of the saddle-node bifurcation and boundary crisis, respectiv
induced by the perturbation atf d/2. The perturbation amplitudee
53.5331023.

FIG. 2. Phase dependences of critical values for the onset o~a!
saddle-node bifurcationmsn and~b! boundary crisismbc induced by
resonant perturbations at frequencyf d/2. m1 andmmc1 denote criti-
cal values for the first period-doubling bifurcation and the last ba
merging crisis in the absence of the resonant perturbation. The
turbation amplitudee53.5331023.
1-2
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An analogous scaling law, but with a different expone
is obtained for the phase dependence of the critical value
the boundary crisismbc :

mbc'mmc2Bucosb~w1wbc
0 !u, ~4!

wheremmc'3.6598 is the value of the bifurcation parame
corresponding to the last band-merging crisis in the abse
of the resonant perturbation,B is a coefficient~in our case for
the «53.5331023 used in the simulation we obtainedB
'0.0917) andwbc

0 '49.04° is the initial phase shift. Fo
small values of«, the fitting of the numerical data yieldsb
'1. It should be noted that the strong influence of the ph
of the second resonant modulation on the boundary and
ternal crises was pointed out in Ref.@15#, although they have
not found any simple relation between dephasingw and the
location of the critical points for crises. For the given pert
bation amplitude«, these curves (msn and mbc) in (m,w)
parameter space serve as boundaries of zones with diffe
numbers of attractors. Below the curvemsn there is only one
attractor, between curvesmsn andmbc there are two coexist
ing attractors, and above the curvembc we have again one
attractor. For given« and certain ranges ofm, by varying
only the phase, we can periodically change the numbe
attractors between 1 and 2, which can be either in the p
odic or in a chaotic state.

(ii) Phase effects in the presence of a resonant pertur
tion with frequency fd/4. Figure 3 shows bifurcation dia
grams of the laser in the presence of a perturbation atf d/4
with three different phasesw5p/6 @Fig. 3~a!#, w5p/3 @Fig.
3~b!#, andw54p/9 @Fig. 3~c!# which were obtained by the
same procedure mentioned above. As in the previous
only one subband from four for each attractor is shown in
figures. For a certain range of the bifurcation parameter, s
a perturbation can induce four attractors, which one can
on each diagram of Fig. 3. The second attractor appears
above the first original period-doubling bifurcation~this
range ofm is not shown in Fig. 3!, and the third and fourth
appear above the second period-doubling bifurcation. C
paring the diagrams in Fig. 3 one can see that the rela
positions of all attractors and correspondingly all bifurcati
points associated with them strongly depend on the phas
the resonant perturbation. Figure 4 summarizes the influe
of the phase on the location of all saddle-node bifurcati
and critical points for boundary crises induced by a pert
bation at frequencyf d/4 in the vicinity of the original first
@Fig. 4~a!# and second@Fig. 4~b!# period-doubling bifurca-
tions and, correspondingly, near the original last@Fig. 4~c!#
and penultimate@Fig. 4~d!# band-merging crises. The phas
dependence for the location of the saddle-node bifurca
msn1 in the vicinity of the first period-doubling bifurcation
represented in Fig. 4~a!, can be approximated by the follow
ing expression:

msn1'm11Aucosa~2w1wsn1
0 !u, ~5!

whereA'1.131023 ~for «51.4131023 used in the simu-
lation!, and wsn1

0 '3.52°. The fitting of the numerical dat
yields a'2/3. Comparing expressions~3! and ~5! one can
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see that this relation has phase-doubled dependence. The
ond peculiarity is that the effect of the resonant perturbat
at the frequencyf d/4 on the first period-doubling bifurcation
is very small.

The phase dependences for the location of saddle-n
bifurcations (msn2 and msn3) in the vicinity of the second
period-doubling bifurcation, shown in Fig. 4~b!, can be ap-
proximated by the expression~3!, wherem1 should be re-
placed by m2 (m2 is the threshold value for the secon
period-doubling bifurcation!; wsn

0 is an initial phase shift
which is different for the two curves and differing byp/2.
This means there are two curves which are shifted byp/2
with respect to each other. For a small value of«, the fitting
of the numerical data yieldsa'2/3 for both curves.

A similar situation takes place in the vicinity of the tw
last band-merging crises. Near the penultimate one we h
two boundary crises@denoted in Fig. 4~c! asmbc3 andmbc2#,
the location of which can be approximated by expression~4!,
wheremmc1 should be replaced bymmc2 (m2 is the threshold
value for the penultimate band-merging crisis!; wbc

0 , as in the
previous case, is different for the two curves and differs
p/2. Therefore, there are again twop/2-shifted curves. The
fitting of the numerical data givesb'1 which coincides
with the previous case for the boundary crisis represente
Fig. 2~b!. In what follows, the numbering of band-mergin
crises will here be in the reverse order, so that the last on
denoted asmmc1, the penultimate one asmmc2, and so on up
to the accumulation point.

FIG. 3. The bifurcation diagrams of the laser versusm in the
presence of a resonant perturbation at frequencyf d/4 with three
different phases~a! w5p/6, ~b! w5p/3, and ~c! w54p/9. msni

andmbci ( i 51,2,3) denote critical values corresponding to the a
pearance of saddle-node bifurcations and boundary crises, res
tively. P3 denotes a period-3 branch which appears atm'3.065.
The perturbation amplitudee51.4131023.
1-3
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In the vicinity of the last band-merging crisis (mmc1) the
phase dependence for the boundary crisis@denoted in Fig.
4~d! asmbc1# can be expressed as

mbc1'mmc12Bucosb~2w1wbc1
0 !u, ~6!

wheremmc1'3.6598,wbc1
0 '27.42°, andB'1.6931022 ~for

«'1.4131023 used in the simulation!. The fitting of the
data yields againb'1 as in the previous case for the boun
ary crisis.

The intersection of these curves leads to the formation
zones with different numbers of attractors. The numbers
the figure denote the number of attractors in every zone. T
means that for a given«, by varying the perturbation phasew
and depending on the value of the bifurcation parametem,
we can change the number of attractors between 1 and
and 3, 3 and 4. There are some values of the phase at w
two attractors appear and disappear simultaneously, but t
values of the phase are different for saddle-node bifurcat
and boundary crises.

(iii) Phase effects in the presence of a resonant pertur
tion with frequency fd/8. We consider this case in order t
generalize the effect of the phase of the resonant perturba
with higher-order subharmonic frequencies. It should
noted that this case repeats all regularities found in the
ceding case; therefore we shall consider it very briefly. F
ure 5 shows the phase dependences for this case in th
cinity of the first three original period-doubling bifurcation

FIG. 4. Phase dependences of critical values for the onset o~a!
saddle-node bifurcationsmsni, and ~b! boundary crisismbci ( i
51,2,3) induced by resonant perturbations at frequencyf d/4. m i

and mmci correspond to normalized threshold values for perio
doubling bifurcations and band-merging crises in the absence o
resonant perturbation. The perturbation amplitudee51.4131023.
The numbers on the figure denote the number of attractors in e
zone.
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@Figs. 5~a!–5~c!# and near the last three original ban
merging crises@Figs. 5~d!–5~f!#. Above the first period-
doubling bifurcation@Fig. 5~a!# we have again the phase
doubled dependence with respect to the previous c
represented in Fig. 4~a!. In the vicinity of the second period
doubling bifurcation there are twop/2-shifted phase-doubled
dependences@Fig. 5~b!#, and above the third period-doublin
bifurcation there exist four phase dependences for sad
node bifurcations shifted byp/4 with respect to each othe
@Fig. 5~c!#. A similar picture, but in reverse order, is observ
for the phase effects of boundary crises in the vicinity of t
last three band-merging crises which are represented in F
5~d!–5~f!. For the given«'0.70631023, the fitting of the
numerical data yieldsa'2/3 for all saddle-node bifurcation
andb'1 for all boundary crises represented in Fig. 5.

Taking into account all regularities found previously, f
the given perturbation amplitude« we can write a genera
relation that allows one to find the phase dependence of
saddle-node bifurcation and critical point for a boundary c
sis induced by weak resonant perturbations with an arbitr
subharmonic frequencyf d/2k (k51,2,3, . . . ). The phase
dependence for the onset of thej th saddle-node bifurcation
induced by a resonant perturbation at frequencyf d/2k in the

-
he

ry

FIG. 5. Phase dependences of critical values for the onset o~a!
saddle-node bifurcationsmsni and ~b! boundary crisesmbci ( i
51,2, . . . ,7) induced by resonant perturbations at frequencyf d/8.
The perturbation amplitudee50.70631023. The numbers on the
figure denote the number of attractors in every zone.
1-4



e

-

ue

r-
w

t

e
rent
the
r a

on
s

nd-
onic
ase
ers
-
as-
one
rved
odic

c-
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vicinity of the i th initial period-doubling bifurcation can b
expressed as

m i , j
sn'm i

pd1Ai ucosa@2k2 iw1p~ j 21!/2i 211w0i
sn!u ~7!

~ i 51,2, . . . ,k and j 51,2, . . . ,2i 21!,

wherem i
pd is the value of the bifurcation parameterm corre-

sponding to thei th period-doubling bifurcation in the ab
sence of the resonant perturbation,Ai is the corresponding
coefficient, which depends on the value of«, andw0i

sn is the
initial phase shift, which is different for differenti. In gen-
eral, a depends on«, but for small « we can assigna
'2/3.

A similar phase dependence occurs for the critical val
for boundary crises:

m i , j
bc'm i

mc2Bi ucosb@2k2 iw1p~ j 21!/2i 211w0i
bc#u ~8!

~ i 51,2, . . . ,k and j 51,2, . . . ,2i 21!,

wherem i
mc is the critical value corresponding to thei th un-

perturbed band-merging crisis,Bi is a coefficient, andw0i
bc is

the initial phase shift, both of which are different for diffe
ent i. Taking into account all previously studied cases,
s.

.

ol

01620
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can assignb'1 for small values of«. It should be noted tha
with increasing« both exponentsa and b also increase.
Obviously, these curves in (m,w) parameter space can b
considered as boundaries of domains of existence of diffe
attractors. The overlapping of these domains results in
appearance of multistable states, the number of which fo
given perturbation amplitude« depends on the bifurcation
parameterm and the perturbation phasew as shown in Figs.
4 and 5.

To conclude, we have found from a numerical simulati
of a loss-modulated CO2 laser simple phase scaling relation
for the location of both saddle-node bifurcations and bou
ary crises induced by resonant perturbations at subharm
frequencies. For a given perturbation amplitude these ph
dependences allow one to find zones with different numb
of coexisting attractors in~bifurcation parameter, perturba
tion phase! parameter space. Since the period-doubling c
cade is a universal feature of driven nonlinear systems
can expect that analogous phase properties will be obse
in many other systems in the presence of resonant peri
perturbations at subharmonic frequencies.
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